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ABSTRACT

Two closely related algorithms are presented for ,
extrapolating to the limit of a-scalar sequente. Ohe, the
even-epsilon algorithm, is due to Wynnj it permits system-
atic calculaticn of the array of Shank’s tranaforms ‘or,
equivalently, of the related Padé Table. The other, the
even-rho algorithm, is closely related to the first and is
also based on Wynn’s work; however, it has different
properties and has not enjoyed the same theoretical
development. Singular rules and near-singular rulec are
developed for both algorithms to handle situations in
which adjacent tabular entries are equal or nearly equal,
leading to zero or very small divisors. Computer pro-
grams implementing these algorithms are given along with
sample output. An appreciabhle amount or historical
background material 1is included.

ADMINISTRATIVE INFORMATION
This research was carried out under the Mathematical Sciences Research Program,

Task Area SR-0140301 (Math Sciences), supported by the Naval Sea Systems Command.

1. INTRODUCTION

1.1 PURPOSE AND SCOPE

The purpose of this report is to present two computational algorithms, called
the even=-rho and the even-epsilon algorithms, for accelerating convergence of numer-
ical sequences and, in addition, to present singular rules and near singular rules
for handling cases where zero or near zero divisors appear in the computations. Nu=
merical sequences arise in a wide variety of contexts in applied mathematics and
engineering; examples are the successive partial sums of an infinite series and the
successive outputs of an iterative process S+l = f(sn). Singular cases require spe-
clal treatment to avoid excessive loss of significance. The computational algorithms
as given here are new but their derivation depends heavily on the work of Peter Wynn.

The singular rules and near singular rules appear here for the first time.
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The even-epsilon algorithm is a computational adaptation of a formula given by
*
Wynn (1966)l relating adjacent members of the Padé table; this table {8 a rec-
tangular array of rational functions the series expansions of which agree in a - )

specified manner with a given series.
The even-rho algorithm is based on developments closely parallel to the above o 3
RN

but stemming from the reciprocal differences {ntroduced by Thiele (1909)

facilitate interpolation by means of rational functions. This algorithm makes its U

debut here. , .
3 These two algorithms, although vety simila:. have different propertiea and .Q, . :
3 behave differently when applied to any. particular numerical sequence. Five examples ' >
of numerical sequences and the resultﬂ of applying the even-~rho and even-epSilon - i
Computer prog:ams are also given.i

. ———— .

Rl AL
U

algorithme to them are given in the dppendixes, '
An effort has been made to include sufficlent historical background to provide

i

perspective for the even-rho énd‘gven-epsi}oniglgorithms. i,éq, to show where they
- To-

fit into the scheme of efforts to éééeleréte convergance of numerical sequences.

:'( a limited extent this historical material also provides background for a companion

‘ report, Eddy (1980) on a very successful method of accelerating convergence of a

vector sequence generated in the iterative solution of a system of linear algebraic. .

equations.

Rl i 2 shsbmcsb ol D A B ) e 2 el e -

1.2 SEQUENCES AND SERIES ,
Numerical sequences and series which must be evaluated numerically arise in
A sequence may be the successive outputs of

many contexts in applied mathematics.

an iterative process

*A complete listing of references is given on page 53.

3
3
- s, " f(sn_l) (l.2-1)

or it may represent the successive partial sums of a power series
- n 3
{ v-' ]
: n b oa tJ (1.2=2) 4
5 N w \ .«
0 j=0 :
é
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Conversely, with any numerica' sequence 8ps 81» Bgaees there can be assoclated a
pover series

S(t) = s, +Z(sj-sj_l)tj (Le2-3)
1=1
ﬁaving partial sums
5,(t) = 8 +§'(é.j-ésj'_.‘1>-tj_ . | ( .‘V.2-4)

which, for t = 1, collapse to the original sequence:
Sn(l) - sn | (1.2=5)

Such a sequence or series may converge with sufficient rapidity to be computa-
tionally useful as it stands; 1t may converge so slowly that acceleration techniques

are required; or it may diverge so that special techniques are required to determine
the antilimit from which it is diverging. '

1.3 CLASSICAL BACKGROUND

Ever since infinite series came into use about the time of Newton, the problem
of accelerating the convergence of slowly converging serles, or of assigning a value
to a divergent series, had to be dealt with. Various methods for doing so, deve-
loped during the 18th and 19th centuries, are discussed in, for instance, Knopp’s
classic treatise, Knopp (1951),4 especially chapters 8, 13, and l4, and also in
Kline (1972)5, chapters 20 and 47. Among the best known of these methods is the

Euler transformation

Z(-l)“ a = 2 -1H" (A“ao)/zn+l (1.3-1)

n=0 n=0

i .

|




where Anao is the nth forward difference of the 2’s beglinning at ag* Another well=-
known'muthod which 18 still in use 1s the Euler=-Macleurin summation formula

N N

B

2 £(n) = f £(x)dx -% (£ (N)=£(0)) + —(-5-121-')‘—1 e ) A0 g0y N1y 300
n=0 0 V n=1

where the an are the Bernoulli numbers.

Toward the end of the 19th century two new methods of dealing with the conver-
gence problem were developed. The first, called summébility theory and associated
primarily with the names of Cesdro and Holder, employed various '"means" which were
linear combinations of successive partial sums. These means proved to be of great
theoretical value but seem to be not very useful computationally. The second new
method involved the use of rational fuuctions, either as continued fractions or as
the ratio of two polynomials; it has largely supplanted other methods for acceler=
ating convergence. C ‘ - ‘ .

The way was opened by Stieltjes who, in a series of papéta beginning in 1889,
exploited the idea of converting the infinite tail of a‘series (the part left after
removing a partial sum) into a continued fraction. Since fhe domain of convergence
of a continued fraction is quite different irom that of a power series, this tech-
nique often ylelds useful reults. See Wall (1948)6.

Soon thereafter came Padé who, in his 1892 thesis, studied the relations
between a given power series and the rectangular array of rational functions (later
known as the Padé table) related to it as follows: the rational function in the
pth row and qth colurmn has numerator of degree p and denominator of degree q and
its power series expansion agrees with the given series through the term of
degree p + q+ (Actually, the array treated by Padé was the transpose of this one,
but this description conforms to current usage.)

To evaluate the limit of convergent series, or the antilimit of a divergent
series, one evaluates the array of functions in the Padé table and looks for conver=-
gence down the columns, q = constant, or along the main diagonal, p = q.

For purely numerical work, the most effective way of accomplishing this eval-
uation is with the epsilon algorithm (or the even-epsilon algorithm) described in
Section 3. ‘




‘Considerable theoretical work has been done on Padé approximation during the
past two decades; the present state of the art is summarized in Baker (1975).7

Farlier work 1is described in the standard works on continued fractiora!

Perron
(1929)% and wall (1948).%

By far the beat known and most widely used example of summation by approxima=

tion by a rational function is the simplest possible case: the rational function is

merely the usual expression for the sum of a geometric series with the common ratio

determined from three successive partial sums. This simple function has been dis=

covered and used by various authors, most notably Aitken (1926)9 and Shanks (1949)10

and (1955).11 Because of the second difference in the denominator, Aitken called it

the delta squared process. This extrapolation process can be written in any of the

,{ following equivalent forms:

2 .
L (sn-sn_l) /(sn+l-23n+sn_l)

T R R R T
i S

\( - Sn - (sn+l-sn)(sn-sn-l)/<sn+1-28n+sn-1)

= g

2
a+l (Sn+1-sn) /(sn+1-25n+sn_l)

ko i A

2
s -5
| P T 135
n+l n n=-1
1 1 1
- - (1.3=4)
An % sn+1 *n Sn Sa=1

Expression (l.2=3) is the form usually given; (l.2-4) is displayed because it is a
special case of the even-epsilon algorithm to be described in Section 3.
For a comprehensive but concise account of acceleration methods currently con-

} . sidered to be of interest, especially the epsilon algorithm, see the lecture notes
' of Claude Brezinski (1977)12 and also his textbook, Brezinski (1978).13
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2, THE RHO AND EVEN=RHO ALGORITHMS
2,1 THE RAO ALGORITHM ‘

The rho algorithm was so named by Peter Wynn who, in Wynn '(1956).14 the first
of two important papers published a few months apart, called attention to the useful-
ness of raeciprocal differences for summary series and for extrapolating to the limit
of séquences,

Reciprocal differences, denoted by p, had been invented a half century earlier
by Thiele (1909)2 to facilitate intarpolation by rational functions. The inter-
polating function appears as a continued fraction which is the analog of Newton’s
polynomial interpolation formula based on his divided differences. Analytical prop=

erties (. hese reciprocal differences were investigated in the eunsuing years by

Norlund whose famous text, Norlund (1924),15 remains the definitive treatment of the

subject. A similar treatment is found in Milne-Thomson (1933).16

The reciprocal differences corresponding to a given set of arguments {xn) and

function values {sn) are defined recursively:

X - X :
n n+l n+m n '
Pn = Pm=2 n+l _ n (2.1-1)
Pm=1 =1
n n = -
e sn. Py 0 (2.1=2)

They are cuétoﬁarily displayed in the rho array a~ shown in Figure 2.1,

1
X1 ,O‘_)tls1
1 X2 %
e T sy sy T . Xg * Xy
X Py=s TSP, =Pyt
2 0.."2 Ao - X ‘," 2 [} 2_ 1
\\‘pzs 3 2 - p' P1
1 qa-sz
X, - X
3 2 3 4 72
X3 Po =53 Py= Pg * P
3 *a%3 1%
1 S,-$
4 '3 X. - X
X 04 = plapt e 22
4 0 54 2 0 /)4 p3
4 %5 % 11
p =
5 Vo505,
Xg po=55

i skt e s i A

Tt s bl th s i AL

Figure 2.1 - The Rho

Array (0Old Notation)

¢y ———— g 4 g
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It will be seen that any particular p: depends explicitly only on three pre-
viously calculated rho’s lying at the other three vertices of a rhombus. However,
N
implicit;jppm depends on all m+l, of the pairs (Xn, sn), (Xn+1, sn+l)"'(xn+m’
ot

Systematic computation of the rho array can proceed according to either of two
patterns: )

* columnwise - all of the input sequence pg = sn,'then all of the first column

n
pl, etc., OFY

* by upsloping diagonals ~ as each new p = sn is obtained, calculate in turn
p?-l, p;—l This latter pattern has two distinct advantages,

it reduces stcrage requirements since calculation along any upsweeping diag-

onal requires input from only itself and the immediately preceding upsweep-

ing diagonal, and

convergence can be monitored in all columns involved on each sweep so that

the basic input interation can be halted as sooun. as possible.

The property of reciprocal differences which mdkes them so useful foruextrapo- :

lating to the limit of a sequence (or, equivalently, for summing a series) is that,

if the general term of a sequence is given by a rotional function of the term index
(ordinarily Xn=n) in the form '

k k=1 '
a X + a X + s0e + a X 4+ a V . . o
k' n k=1 "n . 1l "n 0 g g e
s = ; Vo o (24 =3 .
n Lk k-1 G

Xn + bk-l xn + L) +b1‘k.n + bo

then

DZk = ak for n = 1‘, 2’ 3, s (20 1‘4)

Since obviously

lim s =a (2.1-5)

X *o

it 1is clear that calculation of the even ordered reciprocal differences provides a

systematic way of finding the limit or antilimit of such a sequence. If relation
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(2.1-3) is not exact, but is an increasingly good approximation as n gets larger,
then there will be convergence in the 2k h column;of the rho array.

The rho algorithm. in contrast to. the epsilon algotithm discussed in Section 3,
seems to have received very little attention in the literature since the publication
of Wynn (1956) and convergence heorems for 1t are lacking. It has, however, been

touched upon several times by Brezinski (1971),' (1972), and especially (1977).12

2.2 THE EVEN-RHO ALGORITHM

~ Since only{the even-ordered reciprocal differences are useful for the summation/

extrapolation process, it would be desirable to develop a recursion relation involv-
ing them alone. This indeed can be done and the result is Equation (2.2-4) which, to
- the best of the author’s knowledge, appears here for the first time in print. The
novelty is, however, trivial since the pattern of elimination which leads to this
.recursion relacion is precisely the one employed by Wynn (1966)1 to develop the even-
1_’epSilon'algorithm from his earlier epsilon algorithm. In order to make this report
v'mone self contained, the derivation is given here for the even-rho algorithm.

i Consider a rhombus shaped portion of the rho array as shown in Figure 2.2.

t n-1
P ax \
n
2k - 1 2k+1‘\\\\\\
n+1 n
' p
2k . 2 2k 2k+2
Co ) . n+1

2k+1
n+1

ka

N
==
-

’Figure 2.2 - A Portion of the Rho Array

The rho recursion relation (2.1=1), now for convenience rewritten

X - X
n n+l 2k+4+n+1 n
o+l = Pok-l * Tkl n (2.2-1)
P2k P2k
glves
n+l n+1 n
ol ~ Pokel ™ Foantr X/ (Po =Py)

[

b e

!




and, with n-l replacing n,

n-l o n_onel, o T
241" Pok-1 = FoanKno1) /PPy ) .

Subtraction results in

| ) x -
n+l _n Xoantt = %0 Poian 7 X

n n-1
P11 = P11’ T Tl _ n n _ . n-l
. Pk T Pk Pak = Pax

Now Equation (2.2-1) can be used to replace the ordinary difference on tie left

with reciprocal differences:

Xoetnrl “ %01 %o % Kol T fn Yo Y-l e
n-1 - = - o (2e2-2)

. .n n _ ntl n+tl _ n - n _ n-l
Pak+2 = Pak Pox ~ Pak-2  Pax T P Por T Pax

Note that on the left side the differences lie in a ﬁorizontal directibn; whereas on j

the right side they lie in a vertical direction.

e For ordinary use ‘in summation of series or extrapolation of sequences it is

; natural to take

)

ij ' . _ xn =n (n=.1, 2, 3, «00) - . (2.2-3)

%@: : This substitution yields on the even-rho algorithm

k2 % LAl 2+l (2. 20

= n=1 _ n n _ n+l ntl _ n n _ n-l *

Pk+2 T Pk Pak T Pak-2 P2k T P2k Pak T Pk ;-
n=s_ (n=1, 2, 3, «o.) (k=0,1, 2, 3, vv0)
5 o n . 4
o ‘j
?zﬁ- It is not necessary to specify the 022 since the only term in which they would é
f' appear has k=0 in the numerator. :
;




" There 1is nqﬁ a cross pattern, shown in Figure 2.3, which corresponds to the

rhombus pattern associated with the ordinary rho algorithm.

k=]

2k

n+1 n n-1
2(k - 1} 2k 2(k + 1)

©

n+1
0
2k

Figure 2.3 ~ The Even-Rho Pattern (0ld Notation)

2,3 NEW NOTATION i
The notation pgk used so far has corresponded to that used by Wynn 1in his

later papers on the epsilon'algorithm'and also by Brezinski.

Zk,'ﬂenptés the column, and the upper index, n, denotes the downsloping diagona;'dn 

thth it lies. The latter thus emphasizeé*the first'medber of the input sequence,
S.? which enters into the calculation of ka (see Figure 2. 1)

However, for a computational algorithm which sweeps through the array along
upsloping diagonals, it is much more convenient to have the upper index denote the
upsloping diagonal.
last member of the input sequence, s_, which enters into the current calculation.
Henceforth the upper index denoéing the upsweeping diagonal will be p instead of n;
they are related by “

p=n+ 2k (2.3-1)
In this notation the even-rho array appears as in Figure 2.4. ,
The even-rho recursion, relating the five élements.lying on a cross pattefn,'

appears as in Figure 2.5.

0% I TRy SR PR T re e

-The lower index, m or

Hence 1t 1s constant along each sweep, and thus emphasizes the

AT

L




TGRS
TR = ol

Figure 2.4 ~ The Even-Rho Array (New Notation)

pP'1 p p+1
2lk - 1) . 2k 2(k +1)

pt1
2k

Figure 2.5 ~ The Even-Rho Pattern (New Notation)
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Equation (2.2-4) becomes

|

2(ktl) kN 2+l 2kl
p+l _ P p _ p-l p+l
a4y T P Pk T Paqk-ly Pk

- P -
Pk Pak T Pk
(p =2, 3, 4, e0oe3 k=0, 1, 2, ..s [(P"l)/zl)
pg =8, %123, o)

The new notation has an additional advantage--mainly esthetic, to be Sure--
in that the upper indices in Equation (2.3-2) behave properly instead of running

backward in the horizontal differences as they did in the o0ld notation of Equation
(2.2-4)0

2.4 COMPUTATIONAL ALGORITHM

The two terms on the left side of Equation (2,3-2) have the same structure,
that of principal parts of reciprocal differences taken in a horizontal direction.

Likewise the tw> terms on the right are principal parts of reciprocal differences

taken in a vertical direction. Each such term is used twice, once on each of two

successive gweeps along upsloping diagonals.

It is therefore advantageous to define
the auxiliary quantities

P . 2k : (2.4=1)
LA
™ " P2(k-1;

2k+1

VP ow — L 2. 4=2

kT o ( )
P2k 2k

In terms of these quantities, the equations for calculating the Dp

2% along an
upsloping diagonal indexed by p, as in Figure 2.4, become

p p"l (203"2)

L ‘._;.;.«xﬁ;ms-zs:\zmm‘..‘s»-

[

s R s

ol i L e 02 -




T T ST T I T Rt s
ST I TR T I T T T e s

- 2k+]
k p _ p-l
Pak = Pax

(p-z, 3, 5. ono)

P . yp-! p _ yp-l -
Hk+l Hk + Vk Vk (p 3, 4, 5. ooo)

P o Pl 2(k=1)
Paeeary = %t uP Bm 3 3y )
k+1

(K=0, 1, 2, «o.sf(p=1)/2]), p = 2. 3 b4y wed)

with initial conditions

(p=1, 2, 3, «vv)

(20 ‘0"3)

(20 4=4)

(20 ‘0‘5)

(2. l‘_6)

(2.4-7)

Since calculations along any upsloping diagonal, indexed by p, require as input

only previously computed values for the same p and also for p-l, it is necessary to

maintain six arrays:
three similar arrays from the previc ‘s (p-l) sweep.

lated to P, the maximum value of p, Ly

L = [(P+1)/2]

where [Xx]) means the greatest integer, n, satisfying n < x < n+l.

3. THE EPSILON AND EVEN-EPSILON ALGORITHMS
3.1 SHANKS’ TRANSFORMS AND WYNN’S EPSILON ALGORITHM

three for the currently computed values of V, H, and rho, and
Their maximum length, L, is re-

The epsilon algorithm was so named hy Peter Wyvun who introduced it in Wynn

(1956)19 as a practical method of calculating the array of transforms em(Sn)

s
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discussed by Shanks in his thesis, Shanks (1955).ll The latter is credited by Gragg
(1972).20 page 2, as being one of two principal sources of stimulus for modern inter-
est in Padé approximation and related topics. Actually, an earlier version? Shanks
(1949),10 had attained unusually wide circulation for an internal memorandum and was
widely known among numerical analysts in the early 1950°s.

Shank’s considered sequences of the form

m

s =a + E akr: (3.1=1)

k=l

which arose, for example, in studying the decay of a mixture of radiocactive sub-

stances. If all r, are distinct and satisfy

KR (3.1-2)
then
tm ey T C(31-)

so that a_ is the quantity of interest in this context.
Two properties of tlie sequence (3.1-1) should be noted:
(1) each 5, is the sum of the nth partial sums of m different geometric series;
m
(2) s - a, -‘éz:vakrz has the form of the general solution of a homogenous

k=1
linear finite difference equation with constant coefficients

m
2 Cj(sn'.':l-ao) = 0 (n - 1’ 2, 3, uoo) (3.1"4)
j=0

where the rk are the roots of the characteristic equation
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The auxiliary condition

Y'c fo I (3.1-6)
j-o o C

1s required to exclude the singular case in which one of the roots is unity.
Either Equation (3.1=1) or Equation (3.1-4) can be regarded as characterizing
the sequences to which the theory of this chapter applies. '

Shanks gave an array of transforms

®n n+l R Sntm
sn+1 - sn 8rr0-2 - Sn'i-l v sn-.Hn-H n+in
Sptm T Fptm-l ) ’ ’ Sat2m ~ Sp+2m-1
e (s ) - (3.1-7)
m n
1 1 " s 1
Sa+l T 3, Sat2 T Sp+l e R
stﬂ-m - su+m-1 *t 3n+2m - sn+2m-l
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for estimating a» the limit (or antilimit) of the sequeunce in terms of 2m+l succes=-

sive elements, 8.0 Bpel *c 8 +2m° Here, n denotes the starting point in the
sequence and m denotes the order of the approximation as in Equation (3.1-1)s In

particular, for m=l this yields the well known Aitken delta-aquared extrapolation

formula already shown in Equation (1.3~3),

The expressions (3.1 7) given by Shanks, the ratio of two de.arminants of iankel

type, become practically useless for direct computation even when m is still a small

integer, e.g., m=4,

This difficulty was soon surmounted by Wynn \1956)

who showed

that, with the aid of some new intermediate quantities, a very simple recursion rela-

tion holds.

' ‘He set

n
CZm - em(sn)
t2m+

n
L " llgm(sn+l-§n)

and showed that they satisfy

1’ 2, 3,.0.

n=0, 1, 2, 3,...

B A S -
k+1 k-1 n+l n
€ - €
k
k=0,
cn-s gnuo
o n -1

(30 1"'8)

( (3.1-9)

)

This is the epsilon algorithm; it is very similar to the rho algorithm, Equation

(2.1-1).

16

Correspondingly, there is the epsilon array shown in Figure 3.1l.
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R
1 (:0=S1
1 1
’("1.5 o
2 ~ 1
2 ¢ -32< >c‘-(52+..—.._...
3 72 0T 2
N ” 17 %
1 33-32
3 t'g=sa (52-(3+__.!_
2 .3 2
€ . €
a | 1 1
1 8,8
4 4 "3
4 (0—s4

Figure 3.1 = The Epsilon Array (0ld Notationm)

Systématic comrutation of this array can proceed either columnwise or along up-
sloping diagonals as was discussed for the rho algorithm in Section 2.1.

The relationship between the array of transforms (3.1=7) and the rational
functions of the Padé table was pointed out in Shanks (1949)10 and (1955);11 the
same relationship, but in the language of the epsilon array, was treated in Wynn

(1961).21 Specifically, let s, be the nth partial sum of a power series

s - 2 Cjzj (3. 1-10)

j=0

Substitute Equation (3.1-<10) into the expression (3.1=7) for the em(sn) trans-
form; then in both numerator and denominator multiply the first column by zm. the
gseccnd column by zm-l, +se the last column by zo; cancel out the powers of 2z

in correspoﬁding rows of numerator and denominator. ‘What is left is very clearly

the ratio of a polynomial of degree (n+m) to a polynomial of degree m:
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s

m_ . " ] )

2 an 2 an+l A.‘ ¢ » 4 Bn+m
“ntl B I “ntm

1 ] L ] [ )

[ ] » L ]

[ ] L] L ]
c C [ ] [ ] ] c

n+m n+mt1 n+2m

e (8 )= - (3.1=«11)
m 0 m m=1 0
2 2 . . . F
.en+1f Cat2 ) ) ) Ch+m

. . [

. [ ] L]

L ) [ ] L ]
Catm - Sntmtl ) ) Cn+2m

‘The converse of this result was given by the present author in 195l. In unpub-
lished working notes, he showed that a systematic construction of rational functions,
whose power series expansions agree as far as possible with a given power seriles,

leads to the em(sn) transform as given in Equation (3.1-=11).

3.2 THE EVEN-EPSILON ALGORITHM

As with the rho algorithm, since only even-ordered epsilons are useful for

extrapolatlon, it would seem desirable to eliminate the odd-ordered epsilons and

arrive at a recursion relation involving only even-ordered epsilons. This elimina-
tion was accomplished by Wynn (1966).1 The details will not be repeated here

since they have already been given in Section 2.2 on the rho algorithm. Likewise,
the arguments for changing to a new notation, already given for the rho algorithm
in Section 2.3, will not be repeated here. Suffice it to show in Figure 3.2 the

even—-epsilon array in the new notation:
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S - ris - I

1
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i

Figure 3.2 = The Even-Epsilon Array (New Notation)

o2 e sl i o il R bt i et £
~
(g
]
-
~
oL

| e e oo —

Any five entries in this table, lying on a cross pattern as indicated in Figure
3.3,

i et RS

2«

c‘pl‘ —_—P ———ep+1

2(k - 1) 2 2k + 1) :

i I ki

1 3

1 P! :
3 2k

g 1

E i Figure 3.3 - The Even-Epsilon Pattern (New Notation) ]

> are related according to Wynn’s formula (Wynn (1966),1 page 266) ﬂ

1 1 1 1

- - 02‘1
p+l _.p p _ p-l p+l _ p p _ p-l 3 )
E2(k+1) ~ €2k G2k ~ €2(k-1) f2k €2k €2k T €2k

19
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(p - 2. 3. “..tl; k-o. 1. 2..!0[(p-1)/2])

tg - 8 :22 - » (p Ll 1, 2) 3’.00)

This is the recursion relation among his transforms which Shanks came close to but
never actually attained.®
Comparing this expression, Equation (3.2=1), with that for Aitken’s delta-

squared process (Shanks’ e process) shown in Equation (l.3-4), we see that a
quantity Ez given by

. - ] (3. 2-2)
P _ P pHl _ p p _ p-l
By = Sk Sk T S Sk T

is also given by
1 1 - 1

- 30 2‘3
P_p P b pml ( ‘
Ee " S Sackel) T S2k S2k T S2(k=1)

That is to say, at a given location in the even-epsilon array (Padé table), the

same result is obtained by applying the delta-squared (el) transform either
vertically or horizcntally.

3.3 COMPUTATIONAL ALGORITHM

The two terms on the right side of Equation (3.2-1) have the same structure,
that of principal parts of the next higher odd-ordered epsilcns (see the epsilon
recursion relation, (Equation (3.1-8)), the differences being taken in a vertical

*Oral communication from Shanks.
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direction. ‘A similar remark applies to the two terms on the left side, the differ-

ences being taken in a horizontal direction. This:obse:vat@on_leads to the defini-

tions

P _ 1
Hk p ep--l
€2k 2(k-1)
P . P
et Pl
€k 2k

In terms of thése quantities, the equations for calculating the ¢

an upsloping diagonal indexed by p, as in Figure 3.2, become

1

Py
N Vi 5 ool (p
€ - ¢
"2k 2k

p-1 1
EZk + Hp
k+1

p
€2(k+1)

(k=0,1,2,3,...0\p~1)/2],

with 1initial conditicns

P a
Hy = 0

Note that, for k=0, Equations (3.3-3) and (3.3-4) together yield the Aitken delta=-

squared transform, Equation (l.2-4).
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= 2, 3, 4,.-.)

(P = 3’ 4’ 5,0..)

(P = 3, 49 5,0-.)

(P =2, 3, 4,.004)

(P = 1’ 2’ 3,-00)

(3.3=1) -

p

2K along

(3.3-3)

(3.3-4)

(3.3-3)

(3.3-6)

(3.3-7)
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As in the_ease of the even-rho algorithm, it 1s necessary to maintaln two arrays
for each of V, H, and,epeilon; one each for the current values of V, H, and epsilou
along the upsloping diagonel'indexed by p, 'and one each for the last preceding diag-
onal indexed by p-l. Their-maxinum length, 2, 1s again related to P, the maximum
value of p, by ' ' ' '

.

o s S0 gt B e i Al o sp b R i

[

L = [(P+1)/2]  (3.3-8)

~where [x]) means the greatest integer, n, satisfying r < x < n+l.

4. SINGULAR AND NEAR-SINGULAR RULES
41" NEED FOR SINGULAR AND NEAR-SINGULAR RULES

v

Lomputational algorithms, such as the even-rho and even-epsilon algorithme and

also their ancestors the ordinary rho and epsilon algorithms, in which division

i

plays a major role, are vulnerable to troubles arisipg from attempted division by

g 01

'zero {the singular case) or by a number which is very emall in magnitude (the near- ?u
singular case). These situations are nuisances but need not stop the calculations;
instead, one can-use spetial formulas called 31ngula1 rules for a zero division or

near-singular rules for a near zero division.

The near-singular rules will be derived for the even-rho algcrlthm.‘ Trivial

modifications then yield the near-singular rules for the even-epsilon algorithm.

In either case the'singular rules are then an obvicus. limiting case of the near-

singular rules.

Both singular and near-singular rules for his epsilon algorithm were given by _ ‘.u.”~@
Wynn (1962) and (1963). 23 He also gave a related discussion for ‘the even-epsilon o

algorithm in Wynn (1966).l ' , : | | | 'vé

4.2 NEAR~-SINGULAR RULES FOR THE EVEN-RHO) ALGORITHM - , o Jf
A glance at the computational algorithm, Equations (2.4-3) =~ (2.4~7), reveals

two places in which-a emall‘division may arise: the first is in the computation of

SRR

k’ the second in the’ computation of pg(k+l) In both cases the effects of near
singularity are felt at several neighboring points encountered later ("down-stream')

in the calculations. It 48 interesting to note, in both cases, instances wherein
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veryxlafge numbers cancel out by subtraction; they éancel,exactly to within the accu-
racy of the approximations used. These are underlined in the formulas in which they
, o o _ o s 3 5 7.

‘occur.

Treatment is by a first order perturbation method:  the Sméll divisor, d, is =

assumed to have the following properties: 3 . Lo
(1y |d] << 1 ‘ SR A
(2) 1/]d| >> any other terms added-to ' ' ‘.  fif ,1(4.2—1)

(3) ‘d2==0, i.e.,‘te:mé in d2 afe negligible. o
The simpler cese will be discusséd first. - Suppose that, in the calculations:
' assoclated with the index values p and k, -

e

P yp-l p_-'-’-é—l--g" S -
W, =8+ v -V d . | (4.2-2)

(0

‘where & satisfies the criteria juét given. Then, from Equation (2.4-5),

t

{

C
P _ pel, 2k42 _ 2k42 ™
P2(k+1) ~ P2k +'up =73 (4,2-3)
' o Kl
and from Equaticn (2.4-3) '
P . 2k+3. ~ { 2k+3 )
P2(k+1) ~ P2(k+1)
On the next following upsloping diagonal, indexed by p+l,
pHl 2k+3 ~ . [2k+3 )

C_ P
P2(k+1) ~ P2(k+1)

et e el p oo, (23 [ 2ka) }
ez T e Vi T VT 942 (e ) 9 k+2) ¢ (4276)

p+l _ p 2k+4 _ p-1 , 2k+2 _ (2k+4) (2k+2) _ p-1
P2 (k+2) © P21y T Wt T Pk + 74 (2k+4)A b O

k+2
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These results are summarized graphically in. Figure 4.1.

k k+1

Figure 4.! - First Case of Near-&ingular Rulea
for the Even-Rho Algorithm

The corresponding singular rules ‘are now tr;vial:' for d = 0,

vP = vP*1 . HP

p+l -
kel T Vel T P =H 0

k+2
p .
P2 (k+1)

p+1 p-l
P2(k+2) * P2

24
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L P
"ok i;s almost equal

A more cnmplicated attuatton f.niauz if a newly Lnlculated

' to ngll directly above le Lx thu (’\'t.n'-l.l\o array:

e o (4.2-11)

(40 2-12)

'\gand-", unde.r"‘t.:'he p:‘t_'e\ifibué, as 5_'_'_4;:.'2,*1») "abo‘ut._ ¢, leads .o the follow-

- ing ‘approxima t'iqims :

: :=5H‘)z : Hp-l + v T Vp-l = ,Vp 'M (4.2-13)

oLl i

ET

1w . : . p ) .\ |p 1 __(__tl p-l ;" 2k+gﬁl ‘ -
o Pk .;"°k T T it g ) (4.2-14a)
N R [ ' k\'.'l ‘ .

PRI Y P ST

d

‘e pzk + ot (4.2-14b) "

= pp + i (4.2-14¢) i
Kk 7
I ‘,’,, B o . ' 3

1 . g

pecbelinte

Along the next'upsloping diagonai,‘ ;':ln'dexed by p+l, the approkimations become

tem ikl

PEL by yrtl

Hk+1 k &k kT T %R T 7T

(4e2=15)
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Pl p o 2(ktl) o p | 2Zk+2 (4.2-16a)

2(k+l) 2k P+l ~ P T k4l

k+1

- bt L (442-16b) =

2k 2k+1 3

- Pl _ 1 )

Pok P (4. 2-16c)

«

k+l © p+l _ p pP_z_ls*-_Zd_pp+_g_)
°2(k+1) 2(k+1) ( 2k~ 2k+1 2 2k+l 43

- . {2kH1) - up 4. 2017)

d k 3

pHl _ P Pl _ P o _ P o )

Btz ™ Beat * Vi ™ Vit 7 Vi | (4.2-18) ;

pt+l = oP 2(k+2) P _ 2(k+2) . ) 3
Pak+2) = P2k+1) T . = P2 (k1) b (4.2-19a)
k+2 k+1 i

\ - p=-1 2k+3 _ 2k+4 - p-1 _ 1 - _ _
204 Yo T p T P2k o (4.2-19b) %

k+l  k+l k+1

Still another upsloping diagonal is also affected, that indexed by p+2: *
H.i-f-Z - HP+1 + VP+2 - Vp+1z- v 4 Vp+2 + WP = Vp+2 (4.2-20) 4

+2  _k+l k+l  _k+l k k+1 k k+l

Mkt il
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p+2 o Pt 2(k+2) p+l 2(k+2) }
P2042) T P20e41) T o2 T P2ksl) T T p2 (4s2-21a)

k+2 k+l

p+2 2k+3 | 2k+h  pt2 1

P2kl T Wtz P P2(k+1) t 'v_pf..‘z' (4.2=21b)
k+l  "k+l k+1

Again, the corresponding singular rules are considerably simpler: for d = O,

p-l _ p . P - Pt - . _
Pk T Pak T P2ckel) T P2(k+ly T Pr SAYS (4.2-22)
P o Pl 0 Pt -
Ve " Vier Tt o (4.2-23)
P+1 - - 2Sk+22 -
02(k+2) p P (4.2=24)
K+l
p+2 - 2 (k+2 - -
oD les2) = ° +—(—-—)—Vp+2. (4.2-25)
e+l

In Figure %.2, the very heavy dots indicate those tabular entries of rho or
epsilon which are involved in the second case of the near-singular rules. Heavy
bars between the heavy dots indicate very large values of the corresponding H or V;

these values become infinite in the singular case.
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k- 3
3 3
E ;
E i
1
E
o f
2 f
|
’ k k+1 k+2
: Figure 4.2 - Second Case of Near-Singular Rules for the i
?L Even-Rho and Even-Epsilon Algorithms E
:
f 4,3 NEAR-SINGULAR RULES FOR THE EVEN-EPSILON ALGORITHM
E The opening remarks in Section 4.2, and in particular the restrictions of Equa-
: tion (4.2-1) on the small divisor, d, apply as well to the even-epsilon algorithm. ;
Lo The only difference is that now H and V are defined by Equations (3.3-1) and (3.3-2), 3
; respectively, and the whole algorithm is given by Equations (3.3~3) thru (3.3-7). g
To facilitate comparisons between the corresponding near-singular rules for the even- -
rho and even-epsilon algorithms, corresponding formulas bear corresponding numbers. 7
Equation (4.3-1) is missing but it would be identical to Equation (4.2-1). .f
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In the first case of near singularity, let

P - p=1 P - p-1 - - »
LR R AR | (4e3-2) i3

where d meets the restrictions of Equaticn (4.2-1). Then Equation (3.3=1), the

definition of H for .the e&en-epuilon algorithm, gives

DI T z%” T (4a3=3)

ok SR b T

' - H R AL e KRB vl N

PL .
F2(k+)) & fak P
: k+1
and Equation (3.3-2), the definttion of V, gives - : L
WP . 1 &g I (4, 3=4)
k+1 Ep ",- Ep‘]‘.' "‘f,'
C20kkl) T 2K :
{_ On the next upsloping diagonal, indexed by p+l, i
i
p+1 = 1 ! . ~ . ’ : X - !
Vier1 p+1 p d (4.3-5)

Cf2(k+ly T f2(k+l)

p+l - uP ) p+l R G ;‘_ )
Hk+2 lr{k~!-l ! vk+1 Vk+1~ d 2d d A (4.3-6)
p+l = (P 1 . p-l 1 _1_ p-l o
20c42) T 200+ Tl T2 Y4 T W T (4:3-7)
k+2 —_— ;
; _ i
: These results are summarized in Figure 4.3: i
£
g
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‘Figure 4.3 - Firat.Cése of ﬁearASingufai Rules
for the Even~Epsilon Algorithm.

The corresponding singular rules are, for d=0,

VPooa Pt e Pl

K+l k+1 ka1 ™ Mg = 0

P -
€2 (k+1)

ptl - p-1
€2(k+2) S

(4.3-8)

(4.3-9)

(4.3~-10)

The second and more compliéated case of near singularity arises when a newly

p _ p-l_
€2k T 2k d

30

calculated ggk is almost equal to eg;1 directly above it in the even-epsilon array!

(4,3-11)
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This configuration gives immediately

k

and. under the stated assumptions of Equation (4.2-1) about. d leads to the following
' approxtmationa" '

o

ST DR S WU S N T
Moy = Hp e - vP Woes : (443-13)
P » p-l __];_g,-bp-l n P | . . -
e2(k+1) Zk + P €k + d €2k . (4e 3=14)
k+1

Aleng the next upsloﬁing. diagonal, indexed by p+l, the approximations become

-p+1 - wP p+l P oo _ P _ 1 ‘ )
et "M N = -3 (4.3~15)

p+1 p ' 1 p - - p l -
20+ T S T T T T < x H (4¢3-16)

k+1

p+l _ 1 ~ bl S G )

k+l ~ p+l P D, .P a3 Vi (4.3-17)
f2(k+l) T “2(k+1) 2k 2k

p+tl _ .p PHL _ P o _ P o
B2 Hkil f Ykl ~ Vil T 7 Ve (4.3-18)

p+1 p 1 p 1 )
*2k+2) T S20+) T p+l = Sok+ly T P (4.3-19)

fer2 k+1

k>
.
-3
1
3
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Still another upsloping diagonal is also affected, that indexed by p+2i

: - 1§§2~; 7p¥1 p+2 _ p+l 1 . opt2 1

ez T Bt e T D ¥t 0 Ve T
pr2  _ _p+l 1 p+l 1
“20+2) * “20etl) T g4z T C2qkan) T 2
k+2 k+l

TheLéo;reapohding singular rules, for d = 0, are

=l o P o ¥l - .

€2k T 2k T C2(k+1) T S2qk+1) T C» 98YS

V.p - Vp+1 - Hp = Hp+l - ®

k k+l k+1 k+l

ep"'l - - ..._.L.
2(k+2) wP
k+!
Coke2) ~ )
. k+l
32
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(443-22)

(4.3-23)

(4.3=24)

(4.3=25)




5. IMPLEMENTATION OF THE ALGORITHMS
5.1 COMPUTER PROGRAMS

In order to carry out computational experiments, a small package of computer
programs was developad. The even-rho algorithm, as described in Section 2.4, was
implemented as subroutine EVRHO in CDC FORTRAN Extended (essentially FORTRAN 1V),
Similarly, the even-epsilon algorithm described in Section 3.3 was implemented as
subroutine EVEPS. In addition, a merged version of these subroutines, called
TANDEM, was written to take advantage of the fact that they were almost identical,
differing only in two lines of éoding. The price was to rename most of the inter-
mediate quantities and to double the amount of storage required which was trivial.
These subroutines did not incorporate the singular rules or near-singular rules
described in Section 4 because they were written before the need for near-=singular
rules was perceived and because the necessary modifications would have been relatively
complicated. Protection was built'in, however, which aborted computations whenever
a divisor became too small.

Each sequence to be extrapolated requires the writing of a brief subroutine SEQU
to calculate the successive numbers of the sequence. Five examples are listed in
Appendix A« In each case the sequence is identified in the included comment cards.

In addition, there was an executive routine TDMCHK to perform the usual chores
of calling subroutines and handling output.

Listings of all of these programs are given in Appendix A,

5.2 NUMERICAL EXAMPLES

Corresponding to each of the sequence generating subroutines SEQU listed in
Appendix A, is an output page in Appendix B which shows how EVRHO and EVEPS
performed in that sequence. As might be expected from the theoretical discussions
in Sections 2.1 and 3.1, these two algorithms performed rather differently, one being
superior to the other for any particular sequence but neither being consistently

superior for all sequences. In the fourth example neither performed very well.
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APPENDIX A
LISTINGS OF COMPUTER PROGRAMS

"IDMCHK: Control routine
EVEPS:. Subroutine for even-epsilon algorithm
EVRHO:  Subroutine for even-rho algorithm
TANDEM:  Merged version of EVEPS and EVRHO
SEQU: Sequence generators for:
(1) s = (l41/n)"
(AN n
n
+1
@) 5= 2 -1+ /i
k=1
n
2 ' 2
(3) s, 1/k
‘ k=1
(4) s, = First difference of logarithm of Turning condition pumber for
leading n X n segment of the Hilbert matrix, Theory from Todd
(1954),24 data from Savage and Lukacs (1945).25
(3 s = First difference of logarithm of Turning condition number for
leading n X n segment of the Hilbert matrix. Theory from Todd
(1954),2.4 data from Fettis and Caslin (1967).26
35
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10

15

20

25

30

35

40

45

PROGRAH TOMCHK 73/74  OPT=0 ROUND=+~*/ TRACE FTIN 4e62420

PROGRAM TOMCHKIINPUT, OUTPUT. TAPES = fNPUT. TAPE 6 = QUTPUT)

.
¢ EXERCISE SUBROUTINE TANDEM FOR CALCULATING BOTH EVEN ORDERED
¢ EPSILONS AND EVEN OROERED RECIPROCAL DIFFERENCES FOR VARIOUS.
C " INPUT SEQUENOES, SNe* THE LATTER ARE OEFINED BY A SEPARATE -
¢ suanourzne. SEQU. - e .
c .
c THE nunntxrxss ENEW, eo&o. AND' RNEW, ROLD ARE FOR uss IN tesr:us
¢ FOR CONVERGENCE, IF SO DESIRED. ! . S
Cc : P e - AL
c NS IS THE NUMBER OF SKIPS BEFORE CALLING rnﬂnin. o T
c NP IS THE MAXINUN VALUE OF THE ITERAVION Inoex. NZ. . e PR
c NP ~ NS = MAXIMUM VALUE or INDEX, IP. - i o B LT
c . 'A N 1
c IP:HUST 8E SET TO ZERO ON INITIAL CALL. T0 ASSURE A PROPER srnar.
P =
NS = 0
NP = 40
SNEW = 0.0 . .
ENEW = 0.0 1
" RNEM = 0.0

10 WRITE(641010)
101G FORMAT (4GHLEVEN ORDERED EPSILONS AND RECIPROCAL DIFFERENCES)
11 WRITE(6,1011)
1011 FORMAT (59N SEQUENGCE SN = SUH(!/N"Z)--..-((PI)“Z)IS =1, 6“&93“066
18480)
12 WRITE(651312) )
1012 FORMAT (39HOEVEN ORDER = 2K FOR IP = 2K+t AND 2K#2//3H IP,20X,5HINP
1UT 418X, 7HEPSILON 22Xy 3HRHO/)
15 D0 50 NZ = 4,NP

E0L0 = ENEW
ROLD = RNENW
S50LD = SNEW

20 CALL SEQU(NZ,SOLD,SNEH)
IF(NZ «LE. NS) GO TO SO
SN = SNEW
25 GALL EVEPS(SN)EPyIP,NS,IR)
CALL EVRHO(SNyRHyIPyNS,IR)
ENEW = EP
RNEW = RH
IF (IR +EQ. 1) GO YO 100 : '
30 WRITE(65,1030) IPySNyEP,RH X
1036 FORMAT(LH 4J243E25.14)
50 CONT INUE
100 WRITE(6,1100)
1100 FORMAT (SHODFINISHED)
sTop !
END :
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SUBROUTINE EVEPS

10

11
12

21

23
25
3
40
43

95
1095

100

1suanourxus sveps(s~.sp.xp,us.1az]-,a

"~ 'EVEPS COMPUTES AN ARRAV of EVEN OROERED EPSILONS, Rl(-), FOQ [
" GIVEN.SEQUENGCE, SN, USING THE RECURSION RELlTION GIVEN' BY .PETER

....... TR PRSI E N TR A
rwriuuraw‘)a m‘lwﬂiﬂf\gf ;ﬁhg‘a g}i«l‘?ﬁﬁﬁibﬂ“"llﬁzé

m«lhﬁ‘ b M"‘WW e

S S —
EEMARRIM AR R

73/74  OPT=0 ROUND=+-¥/ jﬁA@g;"[‘_ - FL

WYNN
FOR THE EPSILON ARKAY AND THE .PADE TABLE. . . , o,
(NUM MATH 8 (1966) 264-269) e L
DIMENSION: nztsob,HZ(sn»,thsni.Rz(sn),vatsn».va«so) T
1F 2°KMAX IS THE HIGHEST ORDERED. RECIPROZAL -DIFFERENCE oesxneo.
THEN THE OIMENSION OF THESE ARRAYS WUST BE' AT LEAST KMAX ¢ 1,

THE HIGHEST OROER OF EPSILON CALCULATED AND SENT TO OUTPUT IS
2K FOR IP 2K+L AND 2K¢2. ’

IP NUST BE SET TO ZERO ON INITIAL CALL To ASSURE A PROPER START.

IR 9

IR IS AN ERROR INDICATOR WHICH IS SET YO 1 IN CASE OF PENDING
DIVISION BY ZERO. IT MUST BE TESTEO AND PROPER AGTION TAKEN IN
THE CALLING PROGRAM.

TOL = 1.0E-14

IP IP ¢ 1

1F (IP-2) 12,11,20

V2(1) = 1.4/(SN - R2(1))

R241) = SN

H2(1) = 0.0

60 TO 100

JMAX = (IP+1)/2

RL(1) = SN

HL(1) = 0.0

D0 25 J=1,JHAX L
WS = R1(J) - R2(J) - R
IF (ABS (WS) .LTe TOLs GO TO 95 : S
VI(J) = 1.0/MS

WS = H2(J)

IF(J <EQe 1) WS = 0o0

HLGJ#1) = WS & VI(J) = V2(J)

IF (ABS (H1(J#1)) .LT. TOL) GO TO 95

KL(J+1) = R2(J) ¢ 1.0/7H1(J+1)

EP = R1(JMAX)

DO 43 J=19JMAX

H2 () = H1(J)

kK2(J) = R1(Q

V2Ud) = Vi(d)

GO TO 100

WRITE(6,1095) IP,J

FORMAT (26HODIVISOR TOO SMALL AT IP =,I3,6H,
IR = 1

RETURN

END

[ U (I 1)

J 3,12)
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"SUBROUTINE EVRHO .

i0
15
20
a8
.39

35

40

45

50

y{.‘H f

conono

OO0 OOOQOaOO0

11
12

20

21

23
25
30
40
43

95
1095

100

R1(1) = SN
CHI(L) = Lab ) i B S

Vi R B . P o . - K L

473/75”f 0Pt=C-ROUND:#o‘/ tRACE FIN Sebob20 0

SUBROUTINE EVRHO(SN.RH.!P.NS,IR)

EVRNO GONPUTES AN lRRAV OR EVEN ORDERED REGIPROGAL DIFFERENCES» o
Rita)y FOR A GIVEN SEQUENGCE, SNy USING A RECURSION RELATION ANALOGOUS
TO THAT GIVEN -8Y PETER WYNN FOR THE EPSILON ARR!Y AND THE PAODE TABLE..
(NUN HATH 8 (1966) 264-269) ; .

OI ME NSION uxcso»,uztso).nxaso».nz(so).vttso),va(so: o ST LR

IF 2%KMAX IS THE HIGHEST OROERED RECIPROCAL OIFFERENCE DESIREDr ) k
THEN 7HE ‘DIMENSION OF THESE ARRAYS WUST BE AT LEAST KNAX L T e

L . e
THE NIGNEST ORDER RECIPROCAL OIFFERENCE “ALCULATED 'AND SENT T0. OUTPUT IS : 'ﬁﬂ

2K FOR IP = 2Keéi AND 2Ke2. S W
IP MUST BE SET TO ZERO ON INITIAL CALL TO ASSURE A PROPER START. o

IR = O

IR IS AN ERROR INCICATOR WHICH IS SET 70 1 IN CASE OF FENOING
DIVISION BY ZERO. IT MUST BE TESTEQ AND PROPER ACTION TAKEN IN
THE CALLING PROGRAM.

i v e T

TOL = 1.CE-1k o o
IF(IP=-2) 12911,20 o : "
V2(1) = 1.0/(SN = R2(1)) ; -
R2(1) = SN

H2(1) = e

60 TO 100

JNAX = (IP#1)/2

1 ]

D0 25 J=1,JMAX

WS = RitJ) -~ R2(J)

IF (ABS{NS) LT« TOL) GO TO 9%
Vi(J) = (2%J=1) /WS

WS = H2(J)

IF¢J EQe 1) WS = 0.0

HL(J¢1) = WS ¢ Vi(J) - ¥z :
IF(ABS(H1(Jeld) LT, TOL) GO YO 95 ok
RLGJH1) = R2CJ) ¢ (2%J)/HLLJ#L)
RH = R1(JMAX) :

DO 43 J=1,JMAX

H2(J5) = HiWJ)

R2(J4) = RLICJ)

Lt _uc.ui-l, 'D"i‘; e oy i s |

ik

!

kool bRl

VZ(J) = Vi

G0 TO 100

WRITE(6,1595) IPyJ ;
FORMAT (26HODIVISOR TOO SMALL AT IP 2,1396H, o 3,12) 1
IR = 1 ’
RE TURN

END
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SURROUTINE TANDEN . 74/74

[

0P 120 ROUNO=z4=%/ FRAGE

FIN 4ebtu2)
' 1 SIIBRDUTINE TANDF MISNyERyRHyI P, IR) ’ ' ’
- C
[ TANDEH COMPUTES THO ARRAYS 51HULIAP£0!JSLV FROM A GIVEN lNPU! SEQUENGE.
) [ SM. EVEN ORI:ERED EPSILONS IN REL ARE GOMPUTED \:SING A REGURSION °
- s c QELHIM GIVEN BY PETER WYNN FOR THE EPSILON ARRAY AND. PAOE TABLE, .
c (NUM HATH 8 (3966) 264-269
[ EVEN ORDEKED &E- IPROCAL D) FERENCES IN RR1 ARE CONPUYEt USING AN
g ANAL QGOUS RECURS JON RELATI DEVELOPED BY R, Pa EOCOY. (UNPUBLISHED)
190 OIMEHSION HEL(50), - HEUSM‘ REL1£50), RE2(SQ), VELLS5Q), VER(50)
OIlEN ION NRHSU). AR2 (90) RRL(SM. RR2 (500, URUSOD, vR2(50)
c b .
) c RELAHONS AHONG PARAHE‘ERS"... . e
o c LET ND 8E THE DI MENSIAON OF THESE ARRA'S. AND LEY Z'KHAX BE. THE
15 c HIGHEST ORDERED EPSILGN ANDIOR RECIPROCAL DIFFERENCE UESLRED.
c THEN ND «GE, KMAX41
[ FURTHERMORE, MAX IP = NP=NS = 2'NHAx03 «LEs 2WND | S
C EXAMPLE.ss NO = 50, Q¥KMAX = 98, MAK IP = 100, ,NP = 100, NS =:0
g : ; SR o
20 C CONVERSELY, FOR A GIVEN 10, THE HIGHEST. onoen OF EPSILCN AND/OR
c _RECIPROCAL OIFFERENCE GCALCW-ATED- ANo SENT 'TQ OUTRUT IS e
© € 2K FOR IP = 2K+l AND 2Ke2, )
e )
: c IP MUST BE SEY TN ZERD ON INITIAL CALL TO ASSURE A PHUPER‘STARY;V
2% c
IR = ¢
e IR IS AN ERROR INOICAYOR WHIGH' IS SET .T0:. 3 IN CASE OF FENDING
C DIVISION BY ZERJ. IY HUST 3E TFSILD AND PROP\:" ACTION . tAKEN lh
c THE CALLING PROGRAM,
30 ¢ .
: CTOL = 1.06=16
1C IP = 1P ¢ 4 ) ]
IF(IP-2). 12,11,20 ) o
11 VE2(1) = $.0/(SN - RE2(1)) : :
35 VR2(1} = VE2(1)
12 RE241) = SN
RR2(1) = SN
HEZ(1) = §.0
CHR2C1Y = 0,0
w0 GO YO 100
2C JMAX = (IPel) /2
REL1(1) = SN
RR1(1) = SN
HEL1(1) = 0.9
[ MRL(1) = C.0
00 25 J=1,JMAX
WE = RE1(H ~ KE2(DN
HR = RRito) = RR2J)
IF(ABS(ME) (L T. TOL JOR. ABGS (Wk) LT, TOL) GO TO &5
50 21 VEL(JY) = 1,9/0E
VRI(J) = (2%J~1) /UR
WE = HE2(J)
WR = HR2 (J)
IF(J «NE. 1) GO TO 212
5% HE = (.0
WR 2 0,0
23 HEL(J+1) = WE + VELtJ) = VE2(J)
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SUBROUTINE fANDE'ﬂ 13/ 74 0P Y20 ROUND=+=%/ TRACE FTN &, 6¢425

MRL(JHL) = WR ¢ VRIGJ) = VRZ (J)
IF (ABS(HE1(J¢1)) LT, TOL .OR. ABS(HR1(J#1)) LT, TOL) GO TO 95
60 . REL(J*1) = RE2(J) + 1.C/7HEL(J4L) i
- 125 RR1GJS1) = RR20J) + (2%J))/HR1(Je1) g
‘ 30 EP = REL (JNAX)
RH = RR1(JMAX)
40 00 &3 Jei,JNAX
65 C ME2(J) = HEL(J)
HR2(J) = HR1 (J)
RE2(J) = REL(J)
: - RR2(J) = RR1(J)
. VE2(J) = VEL(J)
70 ' 43 VR2(J) = VR1(J)
60 TO 100
95 WRITE(6,1095) IP,J
1095 FORMAT(26HOOIVISOR TCO SMALL AT IP =,I3,6H, o 2,12)
- IR =1 ,
75 10¢ RETURN : _ g
~ END 1

[T E NS SR S O IR

I ]

———
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SUBROUTINE SEQU 73/76  OP TS0 ROUND=e=®/ YTRACE FIN 4. 60420 ;

1 SUBROUTINE SEQU(NZ,SOL Dy SNEW)

¢ CALCULATION OF SEQUENGE (141 /N)%®N, THE LINIT OF wHICH IS

c € = 2.718281820459045, 00 3

¢

5 ' PRO = 1,0 .

FAC = (1.0 ¢ 1.0/N2) j_

00 10 N=1,N2

10 PRD = PRD®FAC 3

SNEM = PRD ]

10 100 RETURN 4

END 3

j

]
i

41
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SUBROUTINE SEQU

1
11
10C

13/76 0P 720 FOUND=¢=-%/ TRACE FTN Ge64429 229 Y244

SUBROUTINE SEQUENZySOLDySNEW s SH)

PARTIAL SUMS OF SUMC{(=1)®%(N=1))/N) sveookN(2) 3 0.6931647156055994540v0s
SH IS SWITCH TO EFFECT ALTERNATING SIGN IN SUMMATION.

SW = =SKW

SNEW = SOLD ¢ SHW/NZ

RE TURN

END

42




* SUBROUTINE SEQU 73/74  OPT=(Q ROUND=+=%/ TRACE , FIN 4s60420 ]
1 : SUBROUTINE SEQU(NZ,SOLDySNEW)
: c PARTIAL SUNMS SN = SUM(1/N**2) FROM § TO NZ.
c LINIT IS (PI%*2)/6 = 1.64493 40668 48.ce
c ,
5 10 SNEW = SOLD ¢ 1.0/NZ%*2 :
' 15i RETURN , - =
END C - :

-:: HE R i
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SUBROUTINE SEQU

73/7% OPT=( ROUND=e¢=~%7 TRACE FTN b 64420

SUBROUTINE SEQUI(NZ,SOLO0)SNENW)

ASYMPTOTIC TURING CONDITION NUMBER OF LEIDING SEGMENTS OF THE
HILBERT HATRIK....-EXP(3 S25%N)

OIMENSION ELWX(10)

ELMXC 1) = 1.

ELMXL 2) = 126

CELMXC 3) = 192,

ELMX( &) = 6480,

ELNX( S) = 179200,

ELMXL &) = 4410000,

ELMX( 7) .= 133402500,
ELAX( 8) = ‘4269941696,
ELMX( 9) = . 122367445200,

ELMXC10) = 3480673996800,

SNEW = ALOG((NZPELMX(N2))/((NL=1)SELMX(NZ-1)))
RETURN

END
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SUBROVUTINE SEQU

1
¢
c
5
10
15
20
25 1¢
11
100

73/7%  09Tag ROUND=¢=%/ TRACE

SUBROUTINE SEQUINZ,SOLDySNENW)

ASYMPTOTIC SPECTRAL CONDITVION NUMBER OF LEADING SEGMENTS OF THE

HILBERT MATRIX4s e +EXP(3,.525%N)

DIMENSION EVL 1410V, EVLN(LID)

Vil

TEVL L

EVL1L(
EVLLt
EVLL ¢
Evi i
EVLLL
EVLL(
EVLL L
EVLL (1
EVLN(
EVLNt
EVLN{(
EVLN(
EVLHN(
EVLN{
EVLN{
EVLNI(
EVLN(
EVLN{L

A = (EVLL(NZ)®EVLN(NZ=1))/(EVLN(NZ)*EVLL INZ=1))

SNEW =
RE TURN
END

1)

2k

3)
&)
5)
6)
4]
8)
9)
0
1)
2)
3)
4)
S)
6)
n
8)
9}
0)

[T I I T TR T R R T R L RN IR BN

1.0

2.0/3.0 ¢ (SQRT(13,00) /640

1.04083189271237
1.,5002142800592
1.5670506910982
1.6188998589243
1.6608853349269
1.6959389969219
1.7258826639018
1.;519196732652
1.

2:0/73.0 =~ (SQRT(13.00) /6.0

2.6873403557735
9.67C 23C4H022587
3.2879287721719
1.0827994845656
3.4938986059912
1.1115389663724
3.4976764029115
1.0931538193797

ALOG(A)

45

E-03
E-05
E-06
E-07
E-09
€-10
E-12
€-13

3
...:%

FTN &eb*029
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APPENDIX B
SAMPLE OUTPUT

Output pages show the performance of EVEPS and EVRHO on each of the sequences
given in Appendix A. The first three sequences are well known, as are their limits:

(1) e = 2,71828 18284 59045

(2) 1n2 = 0.69314 71805 59945

(3) 72/6 = 1.64493 40668 48226

(4) Following ToddZA one can show that, for large n, the Turning condition
number of leading segments of the Hilbert matrix is asymptotically

Cp = (1/47%/%) 'EXP(nB)
where
B = 2ln ((/541)[(/5-1)) - 3.525996'f 
This B is the Limit of tl;evseAue'n;le 5. |

(5) -It:ié Conjecturable'that, asymptotically, the spectral condition number is
" the same as the Turning condition number for leading segments of the Hilbert
. ‘matrix. This seems to be bornme out by numerical evidence from the even-rho

algorithm.
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EVEN ORDEKED EPSILONS AND RECIPRUCAL OIFFERENCES

© EVEN ORDER = 2K FOR IP = 2Ket 'AND 2K02

(TN
[ o — ]

Ip : INPUT
i +10000000003000E+01
2 «12500000000000E+01
3 «13611111111111F+01
4 «14236111111111E+01
S «16636111111111€+01
6 +14313808888889E+01
7 +15117970521542E+01
8 +15274220521542E¢01
9 15397677 311665E+01

«15497677311665E+01
+15580321939765€E+01

12 «15649766384209E+01

13 +15703937381842E+01

16 «15759958390005E301

15 1580440283 4450E+01

16 «15843465334450E401

17 158780674135 74E401

18 .+ 15908931608105€E+01

19 159366324391 30E+01

20 «15961632439130€+01

21 +15984308176092E+01

22 »16004969333116€+01

23 ¢ 16023872924799E+01

24 ¢ 16041234035910€401

25 +16U57234035910E+02

26 «160720626935318E+01

27 + 16085744356443E401

28 * 16098499458484E+01

29 «16110390064905E+01

30 «16121501176016E+C1

31 +16131907003279€+01

32 «16141672628279E+01

33 »16150855364735E+01

3y, «16159505883766E+01

35 1616766914907 2E+01

36 +161753851908455E401

37 »16182689800354E+01

38 «16189615008110E+01

39 «1619618963u069E+02

40 +16202439630069E+01

FINISHED

EPSILON

.1#500000000000E001”
«15039682539683€+01

+155161 744022506 +01

«1S717673885875E+01
«15903054136156E+51

«15999841551501€ 471

+16090869062916E+0¢1

«16144742951860E¢01
«16196099139024E +01

+16229152906156E+01

+16260947416967E+01
«16282682200907E+01
+16303725523874E +01
«16318771932900E+01
16333452531 306E+01
+16344173994823E+01
«16355339285028E+01
«16362259559 140E+01
«16368694332669E+(1
«16357597244504E +01
*16379715468924E+01
« 163744044 78456E+01
«163770119071 4 TE+01
«16385374869639E+01
+16366790625905E+01
+16385973425784E+01
«16386565826394E +04
«163854346L0996E+01
+16395586315824E+01
»16393734364764E+01
«16394875100907E+01
+164L060G8310537E+01
oi6k101616620§9€001
«16406407078414E+01
«16401447089310E01
1640295457881 3E+01
+16404572488894E+01

+16397048229620C+04 , -

50

©. SEQUENCE SN = SUM(L/N®*2) caeaa (IPID**2) /6 = l-6kk9340668h8126

Do
Ve '

«165000000N0000E+01
+16468253968254E+01

© 1644894 8948949E+ (1
“e1644922586521 1€+ 01 -

«16449343761237E¢01
~164L4934L1653734E+01
164 49340643967E+01
+ 1644934 0662193E+01
«16649340673619€+01
+16449340665627€6+)11
+ 164493406691 35E+01
»16449340667654E+01
« 1644936 0669954E+01
.« 1644934 06680089€+01
+164L49340668418E401
«16449340668014E+01
164493406684 70E401
+1644934 0668398 E+08

+16449340668470E+51

16844934 0668428E+01
*164L49340668466E+08
+164493406630064E+01
«16449340668476E+01
+16449340668185E+01
. +164493340668463E+01L
« 164L49340668457E+01
«16649340668464E¢01
+16449340668429E+D

«16449340668462E+01 .

e 164433406584 62E+01
«16449340668462E+¢01
+ 16649340668519E+31
+16449340668462E+01
016h49340068465E+01
«164649340668492E+01
*1644934b0668464E+01
+164493340668663E+01
« 165493406684 65E+ 01
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